Seasonal and spatial dynamics of 234Th/238U disequilibria in southern Lake Michigan

James T. Waples
Great Lakes WATER Institute, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA

Kent A. Orlandini
Environmental Research Division, Argonne National Laboratory, Argonne, Illinois, USA

David N. Edgington and J. Val Klump
Great Lakes WATER Institute, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA

Received 14 November 2003; revised 3 June 2004; accepted 25 June 2004; published 11 September 2004.

[1] Measurements of 234Th/238U disequilibria were made on an approximately bimonthly basis over the course of a year in nearshore (10–40 m deep) and offshore (160 m deep) surface waters of the southern basin of Lake Michigan (18,100 km2). The mean activity of 238U in Lake Michigan measured 230 ± 20 dpm m$^{-3}$, approximately 1 order of magnitude lower than what is typically found in marine systems. Measured median activities of dissolved (<0.45 μm) and excess particle-bound 234Th were 8.0 and 60.6 dpm m$^{-3}$, respectively. Using a simple one-dimensional model, median residence times for dissolved and particle-bound 234Th were ~1 and ~14 days, respectively. 234Th-based particle settling velocities had a median value of 0.4 m d$^{-1}$ (range: ~0.0–1.4 m d$^{-1}$), and instantaneous 234Th-based estimates of the net vertical mass flux had a median value of 0.4 g m$^{-2}$ d$^{-1}$ (range: ~0.0–5.2 g m$^{-2}$ d$^{-1}$). Average particle settling velocities were generally constant over time and increased only slightly in the shallowest (10 m) sampling stations. Calculated mass fluxes showed a strong correlation with temporal and spatial changes in the concentration of total suspended matter, which, in the nearshore area, closely followed seasonal variations in wind-induced wave height. Using a simple two-box model, the 234Th-based cross-margin mass export rate for the entire southern basin of Lake Michigan was equal to 1.35×10^9 kg yr$^{-1}$, which is in excellent agreement with a 210Pb $-$ 137Cs based, basin-wide mass sedimentation rate of 1.28×10^9 kg yr$^{-1}$.

INDEX TERMS: 4808 Oceanography: Biological and Chemical: Chemical tracers; 3022 Marine Geology and Geophysics: Marine sediments—processes and transport; 0932 Exploration Geophysics: Radioactivity methods; 1806 Hydrology: Chemistry of fresh water; KEYWORDS: 234Th, Lake Michigan, particle transport

1. Introduction

[2] Satellite imagery and long-term turbidity records show that very large sediment resuspension events frequently occur during early spring in the nearshore zone of southern Lake Michigan [Edie et al., 1996]. The role of these events in cross-margin transport of biogeochemically important materials from terrestrial sources to lacustrine sinks is unclear. While long-term patterns of sediment deposition and focusing have been carefully detailed using 210Pb and 137Cs [Robbins and Edgington, 1975], the resolution of these radionuclide tracers is on the decade scale. The dynamics of resuspension and redeposition over the nearshore lakebed, however, vary on the timescales of hours to days, consistent with observed storm front frequencies and meteorological forcing events. These nearshore zones exhibit no net permanent accumulation of sediment, but rather serve as temporary repositories for new inputs of suspended material deriving from coastal erosion processes, riverine inputs, and autochthonous production stimulated by associated nutrient introductions. Such processes are not unique to the Great Lakes, but are commonly observed phenomena in nearly all coastal systems. Understanding the temporal dynamics of these systems requires methods and tracers capable of tracking particles and their associated constituents on the day-to-month timescale.

[3] The 234Th/238U daughter-parent nuclide pair represents an ideal tracer for this application. Naturally occurring, particle reactive 234Th (half-life, t$^{1/2}$ = 24.1 days) and its generally soluble parent, 238U (t$^{1/2}$ = 4.47 × 109 years), have been measured in marine systems for over 3 decades.
Measured disequilibrium between the 234Th daughter and its parent 238U and the distribution of 234Th between particles and the dissolved phase provides an ideal tracer for the study of both short-term particle fluxes and particle reactive scavenging rates. With only a few exceptions [see, e.g., Vogler et al., 1996; Morris et al., 1994], however, 234Th/238U ratios have not been measured in freshwater systems because of limitations in the established gamma and beta counting methods used to measure the activity of 234Th. Accurate measurements of 234Th in freshwater systems are difficult to make because concentrations of the isotope are generally an order of magnitude or more lower than those found in marine systems. More importantly, activity ratios of 234Th to other thorium isotopes are up to 10^4 times lower in fresh water than they are in marine systems [Broecker and Peng, 1982] and difficulties arise in separating the beta counts generated by these other thorium isotopes (particularly 228Th) from those generated by 234Th and its immediate daughter 234mPa. However, by empirically correcting for the interferences from real and apparent betas that are emitted by other thorium isotopes and their progeny [Waples et al., 2003], accurate measurements of 234Th activity in many freshwater systems are possible.

In this first large-scale survey of 234Th/238U disequilibria in a freshwater environment, measurements of 234Th/238U disequilibria were made in the southern basin of Lake Michigan in a series of experimental studies carried out over a 3-year period from 1998 to 2000. All of the studies were undertaken as part of the Coastal Ocean Processes (CoOP) Episodic Events Great Lakes Experiment (EEGLE). In this paper, we focus primarily on the study of surface water 234Th/238U disequilibria measured on six separate cruises in 1999. Estimates of the residence time of dissolved and particle-bound 234Th are calculated using a simple one-dimensional model, extrapolated to the calculation of settling velocities, and mass fluxes, and examined in the context of both time and space. Finally, a 234Th-based cross-margin mass export rate for the entire southern basin of Lake Michigan is discussed in the light of independent sediment budgets for southern Lake Michigan based on the allochthonous mass import estimates of Colman and Foster [1994] and the 210Pb - 137Cs geochronology of Edgington and Robbins [1976].

2. Methods

2.1. Study Area

At 57,750 km2, Lake Michigan is the sixth largest lake in the world [Beeton, 1984]. The lake is divided into two major basins (north and south) with the southern basin occupying approximately one third of the total lake area (18,100 km2) [Edgington and Robbins, 1976] (Figure 1). Morphologically, the southern basin of the lake may be characterized as a relatively simple, conical depression with gradual, sloped bathymetry leading to a maximum depth in the center of the basin of ~170 m. Particle exchange between the southern basin and the remainder of the lake is negligible, with a net mass export rate of less than 1% of local sedimentation [Colman and Foster, 1994]. Sediment accumulation, however, is highly skewed, with the most rapid rates of permanent deposition occurring, not in the deepest portion of the lake, but on the southeastern flank, presumably in response to general circulation patterns that transport material from the western shore to the eastern side of the basin in a counterclockwise direction [Edgington and Robbins, 1990].

Because the focus of this study was to better understand the role of cross-margin transport processes and the behavior of suspended particulate matter in the nearshore and nondepositional area of southern Lake Michigan, surface water samples were primarily collected in the coastal margin in water depths ranging from 10 to 40 m (Figure 1b). Surface water samples were also collected, however, at ~160-m, deepwater stations (DWS) in the center of the southern basin.
southern basin of Lake Michigan, which is located approximately 50 km from the nearest shore.

2.2. Sampling Procedure and Thorium Analysis

[7] A complete and in-depth discussion of the procedure we have developed to measure 234Th/238U disequilibria in Lake Michigan is presented by Waples et al. [2003]. A brief summary of this procedure follows.

[8] Water samples of up to ~200 L were collected using a submersible pump and stored briefly in 50-L plastic containers until separation of the phases by filtration (specific sampling depths, sampling locations and sampling dates are presented in Table 1). The particle-bound thorium fraction on suspended sediment was separated from the water sample by filtration through preweighed nitrocellulose filters (0.45 μm, 293 mm, Millipore), usually within 2 hours of collection. The time of filtration was noted and the filter was stored at 4°C until it could be dried and weighed to determine the mass of total suspended solids. One hundred liters of the filtrate were placed in a 200-L plastic conical container for the recovery of the dissolved thorium fraction (operationally defined by the filter pore size). After adding a requisite aliquot portion of the isotopic diluent, 229Th, the thorium was co-precipitated onto newly formed iron hydroxide (created by addition of 1 mg ferrous iron per liter of sample water) and separated by filtration.

[9] Thorium was isolated from uranium and all other elements by separation on an ion-exchange column. The separated thorium isotopes were next transferred to a stainless steel counting planchet by electrodeposition to provide an essentially weightless source. The sample planchet was first counted using a low background (~0.7 cpm) gas-flow proportional counter with 2.25-inch diameter detectors and anti-coincidence circuitry (G542 System, Gamma Products, Inc.) for four 500-min periods to obtain total (gross) beta counts. The planchet was then counted using a silicon surface barrier detector to determine the total beta count using correction algorithms for the beta counting statistics [Waples et al., 2003]. We have found that the average one-sigma (1σ) error based solely on propagated counting statistics is approximately one half the 1σ error based on replicate sample analyses because sampling errors and other processing uncertainties are not factored into simple propagated counting statistics [Waples et al., 2003; Bueseler et al., 2001]. For clarity, propagated counting errors are not displayed in graphs showing temporal or spatial trends. Where appropriate, quartile values (25%, median, 75%) for each data set are shown instead. We frequently chose median over mean values as a better estimate of the average due to the frequent presence of large outliers in each data set.

3. Results and Discussion

3.1. 238U Activity in Lake Michigan Water

[12] Unlike the oceans where the uranium content has been well defined and may be generally deduced from measurements of salinity [Chen et al., 1986], the uranium concentration in freshwater systems is only poorly correlated with salinity and must be independently determined [see Waples et al., 2003]. However, because water in Lake Michigan has a hydraulic residence time of 62 years [Quinn, 1992], it can be assumed that many naturally occurring conservative tracers (e.g., 238U) are uniformly mixed in the lake. Repeated measurements of dissolved 238U (n = 13) in the nearshore zone of southern Lake Michigan agreed with this assumption and were tightly constrained between 0.20 and 0.26 dpm L$^{-1}$. For further calculations it was taken that the activity of 234Th in secular equilibrium was equal to the mean activity of its parent 238U at 0.23 ± 0.02 dpm L$^{-1}$ (i.e., $230 ± 20$ dpm m$^{-3}$) (1σ, n = 13). Potential errors arising from the use of a mean 238U activity in calculations of particle residence times and scavenging rates (discussed below) are directly related to the extent of disequilibria between 234Th and 238U (i.e., where 0% disequilibrium is defined as secular equilibrium between 232Th and its parent, 238U). In Lake Michigan, where disequilibrium between 234Th and 238U is generally always large (median: 66%), rate calculations based upon 234Th/238U disequilibria are relatively insensitive to small variations in the activity of 238U.

[13] Particle-bound 238U averaged 0.86 ± 0.49 dpm g$^{-1}$ (1σ, n = 42) and was used as the average supported activity of 234Th bound to particles. This mean supported activity of 234Th was subtracted from each measured total activity of particle-bound 234Th, and subsequent discussion of particle-bound 234Th, therefore, relates only to the excess 234Th bound to particles. Excess 234Th activity on particles typically exceeded the supported activity of 234Th by 2 orders of magnitude.

3.2. 234Th Activity in Lake Michigan Water: Nearshore Data

[14] In 1999, large volume water samples were collected in the nearshore region of the southern basin of Lake Michigan on six separate cruises during the months of February, March, April, May, August, and October. A complete list of the sample metadata, suspended particle concentrations, measured 234Th concentrations, and 234Th-derived rates are presented in Table 1. Quartile values of the entire nearshore data set are presented in Table 2. All sampling locations are shown in Figure 1.

[15] Nearshore samples were collected at sites with water depths that ranged from 10 m to 40 m. Samples were almost uniformly collected at a depth of 5 m below the water surface because we were most interested in the behavior both of particles in the photic zone and of those particles that could be observed by satellite imagery. Sampling depths labeled as “integrated” were collected from an
Table 1. Nearshore \(^{234}\)Th Measurements in Southern Lake Michigan\(^a\)

<table>
<thead>
<tr>
<th>Zone(^b)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Collected</th>
<th>Water Depth, m</th>
<th>Cruise G0299</th>
<th>Cruise G0399</th>
<th>Cruise N0499</th>
<th>Cruise N0599</th>
<th>Cruise L1099</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>42.750</td>
<td>87.725</td>
<td>15 Feb. 1999</td>
<td>15</td>
<td>5</td>
<td>4.3</td>
<td>653.4 ± 4.3</td>
<td>0.3 ± 0.3</td>
<td>18.3 ± 0.6</td>
</tr>
<tr>
<td>R</td>
<td>42.750</td>
<td>87.650</td>
<td>15 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>1.0</td>
<td>530.4 ± 3.6</td>
<td>0.3 ± 0.0</td>
<td>10.4 ± 0.5</td>
</tr>
<tr>
<td>C</td>
<td>42.102</td>
<td>87.610</td>
<td>16 Feb. 1999</td>
<td>15</td>
<td>5</td>
<td>1.9</td>
<td>384.2 ± 2.8</td>
<td>0.3 ± 0.0</td>
<td>7.0 ± 0.9</td>
</tr>
<tr>
<td>C</td>
<td>42.133</td>
<td>87.552</td>
<td>16 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>0.4</td>
<td>603.4 ± 4.5</td>
<td>7.2 ± 0.4</td>
<td>11.6 ± 0.6</td>
</tr>
<tr>
<td>G</td>
<td>41.685</td>
<td>87.233</td>
<td>16 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>0.9</td>
<td>496.4 ± 3.0</td>
<td>3.5 ± 0.0</td>
<td>0.5 ± 0.0</td>
</tr>
<tr>
<td>G</td>
<td>41.842</td>
<td>87.233</td>
<td>17 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>0.4</td>
<td>539.4 ± 3.3</td>
<td>0.3 ± 0.0</td>
<td>0.6 ± 0.0</td>
</tr>
<tr>
<td>J</td>
<td>42.134</td>
<td>86.511</td>
<td>17 Feb. 1999</td>
<td>15</td>
<td>5</td>
<td>5.6</td>
<td>583.4 ± 6.1</td>
<td>0.3 ± 0.0</td>
<td>0.5 ± 0.0</td>
</tr>
<tr>
<td>J</td>
<td>42.168</td>
<td>86.584</td>
<td>18 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>0.7</td>
<td>542.4 ± 4.1</td>
<td>6.3 ± 0.8</td>
<td>1.0 ± 0.0</td>
</tr>
<tr>
<td>M</td>
<td>43.188</td>
<td>86.344</td>
<td>18 Feb. 1999</td>
<td>15</td>
<td>5</td>
<td>1.8</td>
<td>977.4 ± 6.0</td>
<td>10.3 ± 0.5</td>
<td>1.6 ± 0.0</td>
</tr>
<tr>
<td>M</td>
<td>43.188</td>
<td>86.386</td>
<td>19 Feb. 1999</td>
<td>30</td>
<td>5</td>
<td>2.0</td>
<td>728.4 ± 4.3</td>
<td>6.8 ± 0.3</td>
<td>1.1 ± 0.0</td>
</tr>
</tbody>
</table>

\(^a\) Water Depth is given in meters, Concentrations are ng L\(^{-1}\), TSM is mg L\(^{-1}\), \(^{234}\)Th is dpm m\(^{-3}\), \(^{234}\)Th is dpm m\(^{-3}\), TID is days, \(V_{p}\) is gm m\(^{-2}\) d\(^{-1}\), and \(J_{k}\) is g m\(^{-2}\) d\(^{-1}\).
integrated depth where the submersible collection pump was raised and lowered through the water column as the sample was collected.

For all samples collected, total suspended matter (TSM) concentrations ranged from 0.3 mg L\(^{-1}\) to 22.4 mg L\(^{-1}\) with a median concentration of 0.9 mg L\(^{-1}\). Excess particle-bound \(^{234}\)Th activities (\(A_{p}^{d}\)) for particles with diameters greater than 0.45 \(\mu\)m ranged from 21.1 ± 2.8 dpm m\(^{-3}\) to 290 ± 35 dpm m\(^{-3}\) with a median \(A_{p}^{d}\) of 60.6 dpm m\(^{-3}\). Although the highest observed \(A_{p}^{d}\) of 290 ± 35 dpm m\(^{-3}\) slightly exceeded the activity of \(^{238}\)U in the surrounding water, activities of particle-bound \(^{234}\)Th in excess of the parent nuclide’s activity can be generated when particles are repeatedly resuspended into new water masses with relatively high activities of dissolved \(^{234}\)Th. In support of this hypothesis, \(A_{p}^{d}\) values on the western shore of Lake Michigan were all high during the April 1999 cruise, with a median activity of 200 dpm m\(^{-3}\) (n = 6).

Activities of dissolved \(^{234}\)Th (\(A_{d}^{f}\)), operationally defined as any \(^{234}\)Th passing through a filter pore size of 0.45 \(\mu\)m, ranged from ~0 dpm m\(^{-3}\) to 134 ± 14 dpm m\(^{-3}\), with a median activity of 8.0 dpm m\(^{-3}\). Approximately 20% of the \(A_{d}^{f}\) values were ~0 dpm m\(^{-3}\). These zero values tended to occur during the winter months (i.e., February, March, and October) when TSM concentrations were high. Calculated \(A_{d}^{f}\) for all samples with no measurable \(A_{p}^{d}\), based on the \(A_{p}^{d}\) of the sample and the mean distribution coefficient (\(K_{d}\), discussed below) for all samples collected during February, March, and October (\(K_{d} = 10.7 \times 10^{6}\), n = 20), averaged 2.7 ± 3.1 dpm m\(^{-3}\) or approximately 1% of the potential \(^{234}\)Th activity in secular equilibrium with \(^{238}\)U, suggesting that the majority of these samples had \(A_{d}^{f}\) close to 0 dpm m\(^{-1}\) at the time of sample collection.

Dis-equilibrium between \(^{234}\)Th and total \(^{234}\)Th (i.e., \(A_{d}^{f} = A_{d}^{f} + A_{p}^{d}\)) ranged from ~0 to 87% with a median value of 66%, which is comparable to the extent of \(^{234}\)Th/\(^{238}\)U disequilibria in very productive or shallow marine systems [see Moran et al., 2003].

3.3. Nearshore Particle Residence Times and Scavenging Rates

This suite of \(^{234}\)Th measurements allows the independent calculation of particle residence times and particle scavenging rates. In surface waters, disequilibrium between dissolved \(^{234}\)Th and its parent, \(^{238}\)U, is largely due to the absorption of the daughter nuclide onto particles suspended in the water. Disequilibrium between total \(^{234}\)Th and \(^{238}\)U, meanwhile, is primarily caused by the removal of \(^{234}\)Th on particles settling out of the water column. In a homogenous, steady state system, where

\[
\frac{\partial A_{d}^{f}}{\partial t} = \frac{\partial A_{d}^{p}}{\partial t} = 0,
\]

residence times of both dissolved and particle-bound \(^{234}\)Th (which are independent of radioactive decay) can be calculated using a simple one-dimensional model [see,
e.g., Coale and Bruland, 1985, 1987], where the residence time or mean life of dissolved 234Th (τ_d, days) is equal to

$$\tau_d = \frac{A_{Th}^d}{(A_U - A_{Th}^d) \lambda},$$

and the residence time or mean life of particle-bound 234Th (τ_p, days) is equal to

$$\tau_p = \frac{A_{Th}^p}{(A_U - A_{Th}^p) \lambda},$$

where A_U is the activity of dissolved 238U, and λ is the decay constant for 234Th (i.e., $\lambda = 0.028761$ day$^{-1}$). While it cannot be assumed that steady state conditions are in effect at any particular point or time along the coast of Lake Michigan (a subject that is briefly addressed by Klump et al. [2003] and the focus of a forthcoming paper based on daily measurements of 234Th/238U disequilibria in nearshore Lake Michigan), average values of 234Th/238U disequilibria over time and space (i.e., annual and basin-wide averages) and the averaged process rates derived from equations (2) and (3) do provide a meaningful range of estimates and a means for comparison to one-dimensional 234Th studies in particle-rich marine systems [e.g., Aller and Cochran, 1976; McKee et al., 1984; Cochran et al., 1986].

[20] On the basis of these steady state assumptions, the residence time of dissolved 234Th in nearshore Lake Michigan surface water ranged from \sim0 to \sim49 days with a median value of 1.1 days (Table 2). These values of τ_d are similar to those reported for shallow or particle-rich marine systems. Here τ_d varied from 1.2 to 9.7 days in Mecklenburg Bay [Kersten et al., 1998], <1 to 10 days in Dabob Bay [Wei and Murray, 1992], 0.5 to 7.7 days in the eastern Irish Sea [Kershaw and Young, 1988], \sim8 days in Buzzards Bay [Cochran et al., 1986], 5.7 to 47 days in the California Current [Coale and Bruland, 1985], 0.3 to 4.0 days over the Yangtze continental shelf [McKee et al., 1984], and \sim1.4 days in Long Island Sound [Aller and Cochran, 1976].

[21] For particle-bound 234Th, residence times in Lake Michigan ranged from 3.7 days to greater than 100 days, with a median value of 13.9 days (Table 2). In marine systems, τ_p varied from 1.3 to 20.1 days in Mecklenburg Bay [Kersten et al., 1998], 1 to 11 days in the coastal northwest Atlantic [Gustafsson et al., 1998], 3 to 60 days in Dabob Bay [Wei and Murray, 1992], 7 to 50 days in the Eastern Irish Sea [Kershaw and Young, 1988], 2.4 to 18 days in the California Current [Coale and Bruland, 1985], and 0.5 to 11.0 days over the Yangtze continental shelf [McKee et al., 1984].

[22] The net settling velocity of suspended particles (V_p, m d$^{-1}$) was simply calculated as the depth at which a water sample was collected (i.e., 5 m) divided by the mean residence time of particle-bound 234Th (τ_p) in that sample [Wei and Murray, 1992]. Settling velocities of suspended particles in nearshore southern Lake Michigan surface waters ranged from \sim0.0 m d$^{-1}$ to 1.4 m d$^{-1}$, with a median settling velocity of 0.4 m d$^{-1}$ (Table 2). This compares favorably to previous estimates of mass settling velocities in Lake Michigan based on sediment trap studies. Evans et al. [1998] calculated a mean settling velocity of 0.45 m d$^{-1}$ for small (<4 μm), light (~2.5 g cm$^{-2}$) minerals, and a mean settling velocity of 0.40 m d$^{-1}$ for inorganic aggregates. In an extensive seasonal study, Shafer [1988] found that particles between 0.4 and 8.2 μm in diameter make up 50 to 90% of the total suspended mass in Lake Michigan and that this material is composed primarily of a seasonally varying mix of organo-mineral aggregates, amorphous detritus, diatom fragments, allochthonous minerals (quarts, clays, feldspars), and calcite. When Schwab et al. [2000] subjected their numerical model of coastal circulation and sediment transport to the meteorological forcing that was observed during March of 1998, the sediment particle size was set to 15 μm with a settling velocity of 0.5 m d$^{-1}$. The model generally reproduced the timing, magnitude and site of sediment resuspension (as revealed by satellite imagery), offshore sediment transport, and the region of sediment deposition (based upon a long-term sediment accumulation map). Detailed structure of the modeled resuspended sediment plume, however, differed from satellite images of the actual resuspension event.

[23] Instantaneous estimates of the net mass flux (g m$^{-2}$ d$^{-1}$) from surface waters were calculated as the product of the concentration of total suspended matter (g m$^{-3}$) and the net settling velocity of the suspended particles (m d$^{-1}$). At 5 m depth, the net vertical flux of particles out of surface waters (i.e., through the 5-m plane) in nearshore southern Lake Michigan ranged from \sim0.0 g m$^{-2}$ d$^{-1}$ to 5.2 g m$^{-2}$ d$^{-1}$, with the median net particle flux equal to 0.4 g m$^{-2}$ d$^{-1}$ (Table 2). The lowest flux estimates were not the result of low TSM concentrations but rather very low settling velocities based upon high A_{Th}^p values.

3.4. 234Th Activity in Lake Michigan Water: Deepwater Data

[24] As a means of observing baseline particle concentrations and 234Th/238U ratios more representative of autochthonous particle production, with (presumably) minimal interference from resuspended sediment, deepwater station (DWS) samples were collected on six separate cruises during the months of August and October of 1998 and February, March, August, and October of 1999. A comparison of the deepwater data in Table 3 and the nearshore data in Table 2 shows a general trend consistent with the reduced abundance of particulate matter in offshore locations. Compared to the nearshore zone, the median TSM concentration at DWS decreased by nearly 50% to 0.5 mg L$^{-1}$. With less particulate mass in the water, the median A_{Th}^p in offshore Lake Michigan was more than doubled to 19.7 dpm m$^{-3}$, leading to a three-fold increase in the median τ_p to 3.3 days. The median offshore A_{Th}^p at DWS also increased by nearly 45% to 86.5 dpm m$^{-3}$, which nearly doubled the median τ_p to 22.9 days. A more detailed examination of the relationship between water depth and TSM concentrations, particle settling velocities, and mass fluxes is presented below.

3.5. Temporal Dynamics of 234Th/238U Disequilibria and Suspended Particle Behavior

[25] At a latitude of ~42°N, Lake Michigan experiences large seasonal fluctuations in climatic forcing. Average surface water temperatures fluctuate nearly 20°C over an annual cycle and the water column generally stratifies between late May and mid-October. In the southern basin,
average surface wind speeds peak during the winter months and gradually decrease by ~50% by summer. Seasonal changes in wind speed affect the mean significant wave height, which varies by nearly 80% between December and June (National Data Buoy Center, buoy 45007). In 1999, median TSM concentrations were highest when the water column was thermally unstratified, reflecting the impact of generally higher wind speeds during winter months and their respective impact on the mean wave height and sediment resuspension in shallow water (Figure 2a). Spatial variability in the suspended sediment load was also highest during the unstratified season (as shown by the range in quartile values), reflecting both the rapid and local nature of wind-driven sediment resuspension.

Temporal variations in \(A_{Th}^p \) (Figure 2b, dotted lines) were generally inversely proportional to suspended sediment concentrations with median activities of nearly 0 dpm m\(^{-3}\) in February and October of 1999 and generally higher activities of ~30–40 dpm m\(^{-3}\) in the summer months. Median values of \(A_{Th}^p \) (Figure 2b, solid lines), however, were remarkably consistent at ~50–70 dpm m\(^{-3}\), with the exception of measurements made during April. In April 1999, values of \(A_{Th}^p \) on the west shore of the southern basin of Lake Michigan were nearly 4 times higher than \(A_{Th}^p \) on the south and southeast shore. The existence of such a gradient in excess particle-bound \(^{234}\text{Th} \) activities stands out in this data set, and cannot be completely explained with only surface water measurements. One explanation, as mentioned above, invokes horizontal advection of new water masses over a frequently resuspended particle pool on the western shore. In any case, with the greater part of total \(^{234}\text{Th} \) bound to particles, total \(^{234}\text{Th}/^{238}\text{U} \) disequilibrium was remarkably consistent at ~60–75%, except for the month of April when the median \(A_{Th}^p \) increased thereby lowering the extent of disequilibrium to ~40% (Figure 2c). Barring April, approximately monthly changes in median \(A_{Th}^p \) were only ~2–12% of \(^{234}\text{Th} \) production (via \(^{238}\text{U} \) decay).

The distribution or partition coefficient of \(^{234}\text{Th} \) (\(K_d \)) between dissolved and particle-bound states varied significantly over the seasons. \(K_d \) is typically described as

\[
K_d = \frac{[\text{Th}]_{\text{particle}}}{[\text{Th}]_{\text{solution}}},
\]

where \([\text{Th}]_{\text{particle}}\) is the activity of particle-bound \(^{234}\text{Th} \) per kilogram of suspended matter and \([\text{Th}]_{\text{solution}}\) is the activity of dissolved \(^{234}\text{Th} \) per kilogram of water. In southern Lake Michigan, median \(K_d \) values for each cruise ranged from ~2 \(\times 10^6 \) to ~11 \(\times 10^6 \) (Figure 2d), which is consistent with the \(K_d \) range of 0.5 to 10 \(\times 10^6 \) deemed characteristic of coastal marine sediments [International Atomic Energy Agency, 1985; Kershaw and Young, 1988]. Values of \(K_d \) were higher during the unstratified winter months than they were during the summer months and tended to shift in relation to the concentration of total suspended matter. Reasons for the observed temporal oscillation in \(K_d \) can be explained in terms of changes in the number of particles in the water column as well as their size and composition. During winter months, increased resuspension of particles would lead to higher concentrations of small particles.
(>0.45 μm), effectively increasing the particle-binding surface area available to 234Th. In effect, the amount of 234Th bound to a given mass of particles would increase resulting in a higher K_d. Conversely, seasonal fluctuations in the concentration of organic colloids (<0.45 μm) could also explain the observed variations in K_d with a larger fraction of 234Th bound to higher concentrations of organic colloids during summer. In one of the few studies of seasonal 234Th/238U disequilibria, Wei and Murray [1992] found 234Th distribution coefficients ranging between 10^6 and 10^8 in Dabob Bay, with K_d values below the euphotic zone generally an order of magnitude higher than in the euphotic zone. Moreover, at 10 m below the surface, 234Th K_d values showed a seasonal oscillation similar to those observed in
Lake Michigan, with higher K_d values tending to occur during the winter months.

Calculated particle process rates based upon measured 234Th/238U disequilibria, TSM concentrations, and the one-dimensional steady state model described by equations (2) and (3) also showed temporal trends consistent with seasonal changes in physical forcing related to wind-induced changes in wave height (and turbulence) and thermal stratification and its effect on isolating the lakebed from surface related processes, especially in nearshore Lake Michigan (Figure 3). The median τ_d (black dotted line, Figure 3a) was lowest during the winter months (~0.0 days in February, 0.4 days in October) and rose to a maximum of 6.8 days in late May in conjunction with the rise and fall of the mean wave height and concentrations of total suspended matter as shown in Figure 2a. The median τ_p ranged from 12.0 to 16.2 days, except during the month of April when very high values of A_{Th} along the western shore of southern Lake Michigan drove the calculated median particle residence time up to 53 days. Median particle settling velocities at 5 m below the surface (Figure 3b) were inversely proportional to the particle-bound 234Th residence times, with most values (barring April) ranging between 0.31 m d$^{-1}$ and 0.42 m d$^{-1}$. It is interesting to note, however, that settling velocities at the 75% quartile closely followed the temporal trend in mean wave height, suggesting that at the upper boundary, wave height and its associated turbulence played some role in the size of particles being resuspended. That is, presumably larger particles with faster settling velocities were more often measured during periods of high wave activity. Mass fluxes at 5 m depth (solid lines, Figure 3c) closely followed the temporal trend in TSM concentrations, with median mass fluxes during the winter months (e.g., 0.46 g m$^{-2}$ d$^{-1}$ in February, 1.19 g m$^{-2}$ d$^{-1}$ in October) at least twice as high as those of the summer (e.g., 0.19 g m$^{-2}$ d$^{-1}$ in late May, 0.26 g m$^{-2}$ d$^{-1}$ in August). This is especially evident in the temporal trend of the 75% quartile, which, again, closely follows the temporal trend in mean wave height.

3.6. Spatial Dynamics of 234Th/238U Disequilibria and Suspended Particle Behavior

Large spatial variations in suspended particle concentrations and 234Th/238U disequilibria were observed in March, April, and October as evidenced by the large spread in quartile values in Figures 2 and 3. However, with the exception of A_{Th} measured in April, spatial differences in 234Th/238U disequilibria and suspended particle concentrations tended to correlate more strongly with water depth rather than geographical location around Lake Michigan’s southern basin. Total suspended matter concentrations clearly decreased with increasing water depth (Figure 4a), as would be expected given that new sediment inputs from coastal bluff erosion and riverine discharge would decrease in relative significance as a function of distance from shore as well as the fact that sediment resuspension for any given wind event would also decrease as a function of increasing water depth. The mean surface water particle concentration in 20 m of water was less than 25% of the mean concentration in 10 m of water (where horizontal distances between the 10- and 20-m isopleths ranged from <1 to 10 km). In water depths exceeding 20 m, however, average surface water TSM concentrations were relatively constant at ~0.5 to ~1.1 g m$^{-3}$, depending on the location and season of sample collection (e.g., samples at all 30 m deep stations were collected only in February and March).

Mean 234Th derived particle settling velocities (Figure 4b) remained fairly constant, with increasing water depth suggesting a fairly uniform range of particle size and composition across the nearshore axis, although a slightly higher range of settling velocities in the shallowest waters (10 m) may have indicated the existence of a larger particle...
class (e.g., resuspended sand). This trend is particularly evident if only frequently sampled (i.e., \(n \geq 5 \)) water depths and uniform sampling depths (i.e., 5 m) are considered (Figure 4b, dotted line).

234Th derived mass fluxes (Figure 4c) also showed an inverse correlation with water depth. Driven predominantly by the onshore-offshore gradient in TSM concentrations, the mean surface water mass flux in 20 m of water was approximately 20% of the mean flux in 10 m of water. At water depths of 20–160 m, however, mean surface water mass fluxes were relatively constant at \(\frac{0.4}{10^9} \) g m\(^{-2}\) d\(^{-1}\).

3.7. Integrated Flux Estimates and Cross-Margin Transport

Lake Michigan has one of the best constrained sediment budgets for any system of comparable scale. Using \(^{210}\)Pb and \(^{137}\)Cs geochronology, Edgington and Robbins [1976] measured sedimentation rates throughout the southern basin of Lake Michigan and determined that (1) 10,600 km\(^2\) of the 18,100 km\(^2\) lakebed of southern Lake Michigan is nondepositional with no net accumulation of sediment and (2) the spatially weighted, mean mass sedimentation rate over the 7500 km\(^2\) depositional area is equal to 17.0 mg cm\(^{-2}\) yr\(^{-1}\) or 1.28 \(\times 10^9 \) kg yr\(^{-1}\) (Table 4). Because the southern basin of Lake Michigan is essentially a closed system with limited exchange of particulate material between the northern and southern basins [Colman and Foster, 1994], 234Th/238U disequilibria may also be used to estimate the mean mass sedimentation rate over the depositional area in the following way.

\[\text{[31] 234Th-based mass fluxes in the nearshore zone (i.e., 10–40 m depth) were all measured over nondepositional areas. Because new materials (from eroding bluffs and riverine inputs) are constantly entering the lake via the nearshore zone, inputs to this nondepositional zone, on an approximately annual basis at least, must equal the export and cross-margin transport of these materials to the depositional zone if the nearshore is to remain nondepositional. Taking the temporally integrated average of the median 234Th-based nearshore mass flux (i.e., the median curve in Figure 3c) to be the “average” mass flux in the nearshore nondepositional zone of southern Lake Michigan requires an export of approximately 1.35 \(\times 10^9 \) kg yr\(^{-1}\) from the nearshore nondepositional zone to the permanently accumulating sediment deposits. This focusing translates to a mean 234Th-based mass flux of 17.9 mg cm\(^{-2}\) yr\(^{-1}\) over the depositional area, which is within 5% of the \(^{210}\)Pb derived mean mass sedimentation rate. A major assumption of this calculation, of course, is that the fine materials, while moving from nearshore to offshore, passed through the 5-m-deep plane from which we sampled.}

Table 4. Particle Accumulation Rates in the Southern Basin of Lake Michigan

<table>
<thead>
<tr>
<th>Zone</th>
<th>(^{210})Pb-Based Sedimentation*</th>
<th>(^{234})Th-Based Mass Flux(^{2})</th>
<th>Source/Sink Mass Balance(^{2})</th>
<th>Lakebed Area(^{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg cm(^{-2}) yr(^{-1})</td>
<td>(10^6) kg yr(^{-1})</td>
<td>mg cm(^{-2}) yr(^{-1})</td>
<td>(10^6) kg yr(^{-1})</td>
</tr>
<tr>
<td>Nondepositional</td>
<td>0.0</td>
<td>12.7(^{2})</td>
<td>1.35</td>
<td>24.0(^1) to 40.0(^{2})</td>
</tr>
<tr>
<td>Depositional</td>
<td>17.0</td>
<td>1.28</td>
<td>17.9(^{2})</td>
<td>1.8 to 3.0</td>
</tr>
</tbody>
</table>

*Source is Edgington and Robbins [1976].

**Source is this study.

\(^{2}\)Source is Colman and Foster [1994].

\(^{3}\)Temporally integrated median 234Th-based particle flux in nearshore Lake Michigan.

\(^{4}\)The 234Th-based particle flux assuming offshore transport in nondepositional, nearshore Lake Michigan.

\(^{5}\)Mud import budget from rivers, aerosols, and bluffs.

\(^{6}\)Southern lake basin mud budget based on volume of Holocene lake sediment and average sand/mud ratio.
[34] Temporally integrated averages of the 25 and 75% quartile mass fluxes (i.e., the shaded lines in Figure 3c) translated to cross-margin mass export rates of 0.8 and 3.2 $\times 10^3$ kg yr$^{-1}$, respectively. This range, based upon a 24.1-day half-life tracer, agrees remarkably well with independent sediment budgets developed by Colman and Foster [1994] for the southern basin of Lake Michigan based on allochthonous mass inputs from rivers, aerosols, and eroding bluffs $(1.80 \times 10^3$ kg yr$^{-1}$) as well as estimates calculated from the distribution and thickness of Holocene lake sediment and an average sand/mud ratio of the surface sediments $(3.0 \times 10^3$ kg yr$^{-1}$).

4. Conclusions

[35] The results of this study represent the first major survey of 234Th/238U ratios in a freshwater system. Although the dissolved 238U activity in Lake Michigan is only $\sim 10\%$ of what is normally found in a marine system, sufficient activity of the daughter nuclide 234Th could be measured in 100–200 L of water using the approach of Waples et al. [2003].

[36] Median residence times for dissolved and particle-bound 234Th in southern Lake Michigan were of the same order as those reported in the literature for shallow or productive marine systems. More importantly, median particle settling velocities and mass flux estimates based on 234Th/238U disequilibria in Lake Michigan were in agreement with previous estimates of these properties based on sediment trap studies [Evans et al., 1998; Shafer, 1988], basin-wide 210Pb — 137Cs geochemistry [Edgington and Robbins, 1976], and allochthonous mass import estimates [Colman and Foster, 1994].

[37] This consistency is remarkable, considering the differences in both the techniques (mass accumulation versus particle removal) and the half-life of the tracers (24.1 days for 234Th versus 22.3 years for 210Pb). Moreover, this also argues that on the basis of current assumptions, measurements of contemporary processes are relevant to historical deposition patterns in Lake Michigan and that the system is near steady state with respect to sediment inputs and burial over the last century (i.e., the time frame of 210Pb geochemistry).

[38] Acknowledgments. We thank the captains and crews of the RV Neeskay, RV Laurentian, and RV Lake Guardian for platform support and Kim Weckerly, Richard MacKenzie, and Don Szmania for analytical and sampling assistance. We also thank two anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Science Foundation CoOP program (OCE-9727151) via the Episodic Events Great Lakes Experiment (EEGLE) and the University of Wisconsin–Milwaukee Great Lakes WATER Institute (contribution 435).

References

